Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
PLoS Comput Biol ; 20(1): e1011795, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38271457

ABSTRACT

The COVID-19 pandemic has been characterised by sequential variant-specific waves shaped by viral, individual human and population factors. SARS-CoV-2 variants are defined by their unique combinations of mutations and there has been a clear adaptation to more efficient human infection since the emergence of this new human coronavirus in late 2019. Here, we use machine learning models to identify shared signatures, i.e., common underlying mutational processes and link these to the subset of mutations that define the variants of concern (VOCs). First, we examined the global SARS-CoV-2 genomes and associated metadata to determine how viral properties and public health measures have influenced the magnitude of waves, as measured by the number of infection cases, in different geographic locations using regression models. This analysis showed that, as expected, both public health measures and virus properties were associated with the waves of regional SARS-CoV-2 reported infection numbers and this impact varies geographically. We attribute this to intrinsic differences such as vaccine coverage, testing and sequencing capacity and the effectiveness of government stringency. To assess underlying evolutionary change, we used non-negative matrix factorisation and observed three distinct mutational signatures, unique in their substitution patterns and exposures from the SARS-CoV-2 genomes. Signatures 1, 2 and 3 were biased to C→T, T→C/A→G and G→T point mutations. We hypothesise assignments of these mutational signatures to the host antiviral molecules APOBEC, ADAR and ROS respectively. We observe a shift amidst the pandemic in relative mutational signature activity from predominantly Signature 1 changes to an increasingly high proportion of changes consistent with Signature 2. This could represent changes in how the virus and the host immune response interact and indicates how SARS-CoV-2 may continue to generate variation in the future. Linkage of the detected mutational signatures to the VOC-defining amino acids substitutions indicates the majority of SARS-CoV-2's evolutionary capacity is likely to be associated with the action of host antiviral molecules rather than virus replication errors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Pandemics , Mutation , Antiviral Agents/pharmacology
2.
Article in English | MEDLINE | ID: mdl-37119988

ABSTRACT

BACKGROUND: Pandemic preparedness is critical to respond effectively to existing and emerging/new viral pathogens. Important lessons have been learned during the last pandemic at various levels. This revision discusses some of the major challenges and potential ways to address them in the likely event of future pandemics. OBJECTIVES: To identify critical points of readiness that may help us accelerate the response to future pandemics from a clinical microbiology laboratory perspective with a focus on viral diagnostics and genomic sequencing. The potential areas of improvement identified are discussed from the sample collection to information reporting. SOURCES: Microbiologists and researchers from five countries reflect on challenges encountered during the COVID-19 pandemic, review published literature on prior and current pandemics, and suggest potential solutions in preparation for future outbreaks. CONTENT: Major challenges identified in the pre-analytic and post-analytic phases from sample collection to result reporting are discussed. From the perspective of clinical microbiology laboratories, the preparedness for a new pandemic should focus on zoonotic viruses. Laboratory readiness for scalability is critical and should include elements related to material procurement, training personnel, specific funding programmes, and regulatory issues to rapidly implement "in-house" tests. Laboratories across various countries should establish (or re-use) operational networks to communicate to respond effectively, ensuring the presence of agile circuits with full traceability of samples. IMPLICATIONS: Laboratory preparedness is paramount to respond effectively to emerging and re-emerging viral infections and to limit the clinical and societal impact of new potential pandemics. Agile and fully traceable methods for sample collection to report are the cornerstone of a successful response. Expert group communication and early involvement of information technology personnel are critical for preparedness. A specific budget for pandemic preparedness should be ring-fenced and added to the national health budgets.

3.
iScience ; 26(3): 106230, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36845032

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and infect individuals. The exterior surface of the SARS-CoV-2 virion is dominated by the spike protein, and the current work examined spike protein biochemical features that have changed during the 3 years in which SARS-CoV-2 has infected humans. Our analysis identified a striking change in spike protein charge, from -8.3 in the original Lineage A and B viruses to -1.26 in most of the current Omicron viruses. We conclude that in addition to immune selection pressure, the evolution of SARS-CoV-2 has also altered viral spike protein biochemical properties, which may influence virion survival and promote transmission. Future vaccine and therapeutic development should also exploit and target these biochemical properties.

4.
Emerg Infect Dis ; 29(1): 224-226, 2023 01.
Article in English | MEDLINE | ID: mdl-36529453

ABSTRACT

We describe a cluster of COVID-19 breakthrough infections after vaccination in Kyamulibwa, Kalungu District, Uganda. All but 1 infection were from SARS-CoV-2 Omicron strain BA.5.2.1. We identified 6 distinct genotypes by genome sequencing. Infections were mild, suggesting vaccination is not protective against infection but may limit disease severity.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Uganda/epidemiology , Breakthrough Infections
5.
Sci Rep ; 12(1): 16308, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175536

ABSTRACT

Farm animals may harbor viral pathogens, some with zoonotic potential which can possibly cause severe clinical outcomes in animals and humans. Documenting the viral content of dust may provide information on the potential sources and movement of viruses. Here, we describe a dust sequencing strategy that provides detailed viral sequence characterization from farm dust samples and use this method to document the virus communities from chicken farm dust samples and paired feces collected from the same broiler farms in the Netherlands. From the sequencing data, Parvoviridae and Picornaviridae were the most frequently found virus families, detected in 85-100% of all fecal and dust samples with a large genomic diversity identified from the Picornaviridae. Sequences from the Caliciviridae and Astroviridae familes were also obtained. This study provides a unique characterization of virus communities in farmed chickens and paired farm dust samples and our sequencing methodology enabled the recovery of viral genome sequences from farm dust, providing important tracking details for virus movement between livestock animals and their farm environment. This study serves as a proof of concept supporting dust sampling to be used in viral metagenomic surveillance.


Subject(s)
Chickens , Dust , Animals , Farms , Humans , Metagenome , Metagenomics
6.
Microbiol Resour Announc ; 11(8): e0060622, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35876572

ABSTRACT

Measles remains a global health challenge despite the availability of a safe and effective vaccine. Sporadic outbreaks of measles virus infections continue in Uganda. We report eight near-complete genome sequences of measles virus strains from Uganda cases from 2011 to 2020, providing useful data for assessing vaccine escape and local/regional transmission.

7.
Microbiol Spectr ; 10(4): e0151422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35766497

ABSTRACT

Based on its predicted ability to affect transmissibility and pathogenesis, surveillance studies have highlighted the role of a specific mutation (P681R) in the S1/S2 furin cleavage site of the SARS-CoV-2 spike protein. Here we analyzed A.23.1, first identified in Uganda, as a P681R-containing virus several months prior to the emergence of B.1.617.2 (Delta variant). We performed assays using peptides mimicking the S1/S2 from A.23.1 and B.1.617 and observed significantly increased cleavability with furin compared to both an original B lineage (Wuhan-Hu1) and B.1.1.7 (Alpha variant). We also performed cell-cell fusion and functional infectivity assays using pseudotyped particles and observed an increase in activity for A.23.1 compared to an original B lineage spike. However, these changes in activity were not reproduced in the B lineage spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, this substitution needs to occur on the background of other spike protein changes to enable its functional consequences. IMPORTANCE During the course of the SARS-CoV-2 pandemic, viral variants have emerged that often contain notable mutations in the spike gene. Mutations that encode changes in the spike S1/S2 (furin) activation site have been considered especially impactful. The S1/S2 change from proline to arginine at position 681 (P681R) first emerged in the A.23.1 variant in Uganda, and subsequently occurred in the more widely transmitted Delta variant. We show that the A.23.1 spike is more readily activated by the host cell protease furin, but that this is not reproduced in an original SARS-CoV-2 spike containing the P681R mutation. Changes to the S1/S2 (furin) activation site play a role in SARS-CoV-2 infection and spread, but successful viruses combine these mutations with other less well identified changes, occurring as part of natural selection.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Furin/genetics , Furin/metabolism , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Uganda
8.
Sci Rep ; 12(1): 202, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997042

ABSTRACT

Pneumonia remains a major cause of mortality and morbidity. Most molecular diagnoses of viruses rely on polymerase chain reaction (PCR) assays that however can fail due to primer mismatch. We investigated the performance of routine virus diagnostics in Kilifi, Kenya, using random-primed viral next generation sequencing (viral NGS) on respiratory samples which tested negative for the common viral respiratory pathogens by a local standard diagnostic panel. Among 95 hospitalised pneumonia patients and 95 household-cohort individuals, analysis of viral NGS identified at least one respiratory-associated virus in 35 (37%) and 23 (24%) samples, respectively. The majority (66%; 42/64) belonged to the Picornaviridae family. The NGS data analysis identified a number of viruses that were missed by the diagnostic panel (rhinovirus, human metapneumovirus, respiratory syncytial virus and parainfluenza virus), and these failures could be attributed to PCR primer/probe binding site mismatches. Unexpected viruses identified included parvovirus B19, enterovirus D68, coxsackievirus A16 and A24 and rubella virus. The regular application of such viral NGS could help evaluate assay performance, identify molecular causes of missed diagnoses and reveal gaps in the respiratory virus set used for local screening assays. The results can provide actionable information to improve the local pneumonia diagnostics and reveal locally important viral pathogens.


Subject(s)
Genome, Viral , Metagenome , Metagenomics , Pneumonia, Viral/diagnosis , Respiratory System/virology , Viruses/genetics , High-Throughput Nucleotide Sequencing , Humans , Kenya , Missed Diagnosis , Phylogeny , Pneumonia, Viral/virology , Predictive Value of Tests , Viruses/isolation & purification
9.
bioRxiv ; 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-34230931

ABSTRACT

The African continent like all other parts of the world with high infection/low vaccination rates can, and will, be a source of novel SARS-CoV-2 variants. The A.23 viral lineage, characterized by three spike mutations F157L, V367F and Q613H, was first identified in COVID-19 cases from a Ugandan prison in July 2020, and then was identified in the general population with additional spike mutations (R102I, L141F, E484K and P681R) to comprise lineage A.23.1 by September 2020, with this virus being designated a variant of interest (VOI) in Africa and with subsequent spread to 26 other countries. The P681R spike substitution of the A.23.1 VOI is of note as it increases the number of basic residues in the sub-optimal SARS-CoV-2 spike protein furin cleavage site; as such, this substitution may affect viral replication, transmissibility or pathogenic properties. The same P681R substitution has also appeared in B.1.617 variants, including B.1.617.2 (Delta). Here, we performed assays using fluorogenic peptides mimicking the S1/S2 sequence from A.23.1 and B.1.617.2 and observed significantly increased cleavability with furin, compared to sequences derived from the original Wuhan-Hu1 S1/S2. We performed functional infectivity assays using pseudotyped MLV particles harboring SARS-CoV-2 spike proteins and observed an increase in transduction for A.23.1-pseudotyped particles compared to Wuhan-Hu-1 in Vero-TMPRSS2 and Calu-3 cells (with a presumed early entry pathway), although lowered infection in Vero E6 cells (with a presumed late entry pathway). However, these changes in infectivity were not reproduced in the original Wuhan-Hu-1 spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, which may affect viral infection and transmissibility, this substitution alone is not sufficient and needs to occur on the background of other spike protein changes to enable its full functional consequences.

10.
Viruses ; 15(1)2022 12 20.
Article in English | MEDLINE | ID: mdl-36680055

ABSTRACT

Infections involving antibiotic resistant Staphylococcus aureus (S. aureus) represent a major challenge to successful treatment. Further, although bacteriophages (phages) could be an alternative to antibiotics, there exists a lack of correlation in phage susceptibility results between conventional in vitro and in vivo assays. This discrepancy may hinder the potential implementation of bacteriophage therapy. In this study, the susceptibility of twelve S. aureus strains to three commercial phage cocktails and two single phages was assessed. These S. aureus strains (including ten clinical isolates, five of which were methicillin-resistant) were compared using four assays: the spot test, efficiency of plating (EOP), the optical density assay (all in culture media) and microcalorimetry in human serum. In the spot test, EOP and optical density assay, all cocktails and single phages lysed both methicillin susceptible and methicillin resistant S. aureus strains. However, there was an absence of phage-mediated lysis in high concentrations of human serum as measured using microcalorimetry. As this microcalorimetry-based assay more closely resembles in vivo conditions, we propose that microcalorimetry could be included as a useful addition to conventional assays, thereby facilitating more accurate predictions of the in vivo susceptibility of S. aureus to phages during phage selection for therapeutic purposes.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents , Staphylococcal Infections/therapy , Staphylococcus Phages
11.
Emerg Infect Dis ; 27(12): 3133-3136, 2021 12.
Article in English | MEDLINE | ID: mdl-34708685

ABSTRACT

As the coronavirus pandemic continues, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence data are required to inform vaccine efforts. We provide SARS-CoV-2 sequence data from South Sudan and document the dominance of SARS-CoV-2 lineage B.1.525 (Eta variant) during the country's second wave of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , South Sudan/epidemiology
12.
Virus Evol ; 7(2): veab067, 2021.
Article in English | MEDLINE | ID: mdl-34527286

ABSTRACT

Defining the unique properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein sequences has potential to explain the range of Coronavirus Disease 2019 severity. To achieve this we compared proteins encoded by all Sarbecoviruses using profile Hidden Markov Model similarities to identify protein features unique to SARS-CoV-2. Consistent with previous reports, a small set of bat- and pangolin-derived Sarbecoviruses show the greatest similarity to SARS-CoV-2 but are unlikely to be the direct source of SARS-CoV-2. Three proteins (nsp3, spike, and orf9) showed regions differing between the bat Sarbecoviruses and SARS-CoV-2 and indicate virus protein features that might have evolved to support human infection and/or transmission. Spike analysis identified all regions of the protein that have tolerated change and revealed that the current SARS-CoV-2 variants of concern have sampled only a fraction (∼31 per cent) of the possible spike domain changes which have occurred historically in Sarbecovirus evolution. This result emphasises the evolvability of these coronaviruses and the potential for further change in virus replication and transmission properties over the coming years.

14.
Nat Microbiol ; 6(8): 1094-1101, 2021 08.
Article in English | MEDLINE | ID: mdl-34163035

ABSTRACT

Here, we report SARS-CoV-2 genomic surveillance from March 2020 until January 2021 in Uganda, a landlocked East African country with a population of approximately 40 million people. We report 322 full SARS-CoV-2 genomes from 39,424 reported SARS-CoV-2 infections, thus representing 0.8% of the reported cases. Phylogenetic analyses of these sequences revealed the emergence of lineage A.23.1 from lineage A.23. Lineage A.23.1 represented 88% of the genomes observed in December 2020, then 100% of the genomes observed in January 2021. The A.23.1 lineage was also reported in 26 other countries. Although the precise changes in A.23.1 differ from those reported in the first three SARS-CoV-2 variants of concern (VOCs), the A.23.1 spike-protein-coding region has changes similar to VOCs including a change at position 613, a change in the furin cleavage site that extends the basic amino acid motif and multiple changes in the immunogenic N-terminal domain. In addition, the A.23.1 lineage has changes in non-spike proteins including nsp6, ORF8 and ORF9 that are also altered in other VOCs. The clinical impact of the A.23.1 variant is not yet clear and it has not been designated as a VOC. However, our findings of emergence and spread of this variant indicate that careful monitoring of this variant, together with assessment of the consequences of the spike protein changes for COVID-19 vaccine performance, are advisable.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Motifs , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Phosphoproteins/genetics , Phylogeny , Uganda/epidemiology , Viral Proteins/genetics
15.
Microbiol Resour Announc ; 10(15)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858926

ABSTRACT

Here, using a sequence-independent sequencing approach (M. V. Phan, P. Hong Anh, N. Van Cuong, B. Oude Munnink, et al., Virus Evol 2:vew027, 2016, https://doi.org/10.1093/ve/vew027), we determined human astrovirus (HAstV) genome sequences from eight diarrheal stool samples collected in coastal Kenya in 2019. Phylogenetic analysis identified the following 4 genotypes: HAstV-1 (n = 4), HAstV-2 (n = 1), HAstV-3 (n = 1), and HAstV-5 (n = 2).

16.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632868

ABSTRACT

We report the genome sequence of a Minacovirus strain identified from a fecal sample from a farmed mink (Neovison vison) in The Netherlands that was tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using real-time PCR (RT-PCR). The viral genome sequence was obtained using agnostic deep sequencing.

17.
Bioinformatics ; 37(5): 705-710, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33031509

ABSTRACT

SUMMARY: Here, we present an automated pipeline for Download Of NCBI Entries (DONE) and continuous updating of a local sequence database based on user-specified queries. The database can be created with either protein or nucleotide sequences containing all entries or complete genomes only. The pipeline can automatically clean the database by removing entries with matches to a database of user-specified sequence contaminants. The default contamination entries include sequences from the UniVec database of plasmids, marker genes and sequencing adapters from NCBI, an E.coli genome, rRNA sequences, vectors and satellite sequences. Furthermore, duplicates are removed and the database is automatically screened for sequences from green fluorescent protein, luciferase and antibiotic resistance genes that might be present in some GenBank viral entries, and could lead to false positives in virus identification. For utilizing the database, we present a useful opportunity for dealing with possible human contamination. We show the applicability of DONE by downloading a virus database comprising 37 virus families. We observed an average increase of 16 776 new entries downloaded per month for the 37 families. In addition, we demonstrate the utility of a custom database compared to a standard reference database for classifying both simulated and real sequence data. AVAILABILITYAND IMPLEMENTATION: The DONE pipeline for downloading and cleaning is deposited in a publicly available repository (https://bitbucket.org/genomicepidemiology/done/src/master/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Databases, Genetic , Databases, Nucleic Acid , Genome , Humans , Proteins
18.
Microbiol Resour Announc ; 9(47)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33214312

ABSTRACT

We report seven chicken megrivirus genome sequences identified in chicken fecal samples from a broiler farm in The Netherlands. The sequences were determined using metagenomic sequencing and would expand our understanding of the genome diversity of megriviruses.

19.
Virus Evol ; 6(2): veaa044, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32913663

ABSTRACT

African swine fever virus (ASFV), belonging to the Asfarviridae family, was originally described in Africa almost 100 years ago and is now spreading uncontrolled across Europe and Asia and threatening to destroy the domestic pork industry. Neither effective antiviral drugs nor protective vaccines are currently available. Efforts to understand the basis for viral pathogenicity and the development of attenuated potential vaccine strains are complicated by the large and complex nature of the ASFV genome. We report here a novel alignment-free method of documenting viral diversity based on profile hidden Markov model domains on a genome scale. The method can be used to infer genomic relationships independent of genome alignments and also reveal ASFV genome sequence differences that determine the presence and characteristics of functional protein domains in the virus. We show that the method can quickly identify differences and shared patterns between virulent and attenuated ASFV strains and will be a useful tool for developing much-needed vaccines and antiviral agents to help control this virus. The tool is rapid to run and easy to implement, readily available as a simple Docker image.

20.
Sci Rep ; 10(1): 13748, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792677

ABSTRACT

The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective.


Subject(s)
Environmental Monitoring/methods , Sewage/virology , Virome/genetics , Viruses/classification , Viruses/isolation & purification , Cross-Sectional Studies , Disease Outbreaks , Food Contamination , Humans , Metagenome/genetics , Metagenomics/methods , Pilot Projects , Vegetables/virology , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...